Exercise 65

(a) Use the Squeeze Theorem to evaluate $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$.
(b) Graph $f(x)=(\sin x) / x$. How many times does the graph cross the asymptote?

Solution

Since $-1 \leq \sin x \leq 1$, use $-1 / x$ and $1 / x$ for the lower and upper bounds, respectively.

$$
-\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x}
$$

Take the limit of all sides as $x \rightarrow \infty$.

$$
\lim _{x \rightarrow \infty}-\frac{1}{x} \leq \lim _{x \rightarrow \infty} \frac{\sin x}{x} \leq \lim _{x \rightarrow \infty} \frac{1}{x}
$$

Evaluate the limits.

$$
0 \leq \lim _{x \rightarrow \infty} \frac{\sin x}{x} \leq 0
$$

Therefore, by the Squeeze Theorem,

$$
\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0 .
$$

This is illustrated in the graph of $(\sin x) / x$ below.

The horizontal asymptote is $y=0$, which is crossed an infinite number of times.

